Welcome! Blurpalicious is a social platform where you can create content and share it to the world!

User Profile @Jessie2017

author: Echo

website: gigalightoptics

follow: twitter pinterest 


Jessie2017's Posts

Brief Introduction on 25G/50G/100G Ethernet

by Jessie20176 months ago

The rise of cloud computing and the expansion of the data center are pushing the latest Ethernet speeds up, while big data based on cloud technology has already added to carriers' workloads. To meet this requirement, the data center extends the bandwidth capabilities that are parallel to existing infrastructure. Rapid growth in the expected 25G and 100G Ethernet deployments is a testament to this trend.

In order to be able to handle the increasing data load, the industry's largest long-distance cloud companies have together with their core network's data center operators, to jointly use the 100G Ethernet architecture. However, most operators believe that 100G or even 40G is somewhat excessive for server connections because its workload only needs to be incrementally improved over 10G networks. This is why, although 40G and 100G Ethernet have been introduced, 25G and 50G Ethernet are still one of the reasons for the common choices within the data center. Below we will briefly explain w

continue reading →
3 visits | 0 Comments|Reply

Introduction on 5 Kinds of 40G QSFP+ Optical Transceivers

by Jessie20176 months ago

40G optical transceivers are a series of optical transceivers with 40Gbps transmission rate, in which CFP and QSFP are the main form factors. And the 40G QSFP+ optical transceivers are one of the most widely used optical transceivers. In the post, Gigalight will introduce you several kinds of most popular 40G QSFP+ optical transceivers that can help you have a better choice.

40G LR4 QSFP+

The 40G LR4 QSFP+ optical transceiver is typically used with LC single-mode fiber patch cables for transmission distances up to 10km, and it has 4 data channels that transmit data simultaneously. The advantages of 40G LR4 QSFP+ optical transceivers are high density, low cost, high speed, large capacity, and low power consumption.

The working principle of 40G LR4 QSFP+ optical transceiver: The laser driver controls the arrival wavelength, the optical signal passes through the multiplexer and is combined together for transmission. When arriving at the receiving end, these transmitted signals are then

continue reading →
1 visits | 0 Comments|Reply

Comparing 10G SFP+ DAC and 10G SFP+ Transceivers

by Jessie20176 months ago

The development of artificial intelligence and Internet of things presents new challenges to the expansion of data centers, and there is often a contradiction between technology and cost. In order to realize high density and high capacity, it is important to control cost factors and reasonable wiring. In the wiring, we can choose the high-speed cable and the optical transceiver cables, so how do we choose these two products in the actual scene? What are the differences and what advantages do they have? Let's study together about the differences between 10G SFP+ DAC and 10G SFP+ transceivers.

As a transmission medium, 10G SFP+ DAC and 10G optical transceivers can be selected. What is the difference between the two?

  • The 10G DAC is connected to two switches through copper cables. The SFP+ optical transceiver is connected to the jumpers to connect the two switches.
  • 10G DAC is short-distance transmission; the longest distance is 15M, used in the engine room.
  • The SFP+ transceiver can p
continue reading →
2 visits | 0 Comments|Reply

Tips on Using Optical Transceivers

by Jessie20176 months ago

Optical transceiver consists of optoelectronic devices, functional circuits, and optical interfaces. The optoelectronic devices include transmit and receive parts. The transmitting part is: Inputting a certain bit rate of the electric signal is processed by an internal driver chip to drive a semiconductor laser (LD) or a light emitting diode (LED) to emit a corresponding rate of modulated optical signal, and an internal optical power automatic control circuit is provided therein. The output optical signal power remains stable. The receiving part is: After a certain code rate of the optical signal input transceiver is converted into an electrical signal by the light detecting diode. After the preamplifier outputs the corresponding rate of the electrical signal, the output signal is generally PECL level. At the same time, an alarm signal will be output after the input optical power is less than a certain value.

Today Gigalight will share with everyone some tips on using optical transcei

continue reading →
1 visits | 0 Comments|Reply

What Can Pluggable Optical Transceivers Do in Data Centers

by Jessie20176 months ago

For data centers, fiber-optic technology is no longer an option, or is only used to solve the most difficult interconnection problems. Today, high broadband, high port density and fiber optic technology are needed to solve low power requirements, and the current optical fiber technology is a kind of batch production technology, low cost, and is widely used in various applications such as switches interconnect and server interface. And in this post, Gigalight will introduce what pluggable optical transceivers can do in data center in detail.

1. Extend Data Center Distance

From 100Mb/s to 100Gb/s, single-channel 25G Ethernet optical transceivers lead the optical transceiver market of next-generation servers and switches. 40G QSFP+ products can support transmission distances up to 300m over multimode optical fibers, which greatly exceeds the standard distance of IEEE 40G Ethernet. In the 40G QSFP+ that transmits on single-mode fiber, and the 10 GSFP+ product that transmits 80 km, our OI

continue reading →
1 visits | 0 Comments|Reply

Three Trends for Driving 100G Ethernet Development

The Ethernet market has seen tremendous growth over the past few years. Accelerating the transmission speed and expanding the capacity of the data center will help promote this trend. According to the IHS Infonetics report, by 2019, 100 Gigabits per second 100G Ethernet will account for more than 50% of the data center fiber transceiver market. As 100G chips are being put into production, the market for 100G Ethernet is accelerating. In this article Gigalight will analyze the three major trends driving the development of the 100G Ethernet market.

1. Data Center Architecture and Traffic Changes

At present, the transmission technology of the optical fiber industry reaches gigabits per second (10G) and 40 gigabits per second (40G), which has been a long time. These technologies are effective and most people have no objection to this. For most users, the 40G transmission speed is more than enough. The problem of data transmission in the data center becomes obvious. The scale and traffic

continue reading →
1 visits | 0 Comments|Reply

CSFP (Compact SFP): How Much Do You Know

by Jessie20176 months ago

Compact SFP is a new kind of fiber transceiver usually known as CSFP fiber optic transceivers. CSFP is short for Compact SFP. CSFP has the same size of SFP, Cisco also called this as 2- channel bi-directional SFP. And in this post, we will guide you have a deeper understanding about Compact SFP if you are interested.

Introduce CSFP MSA and CSFF MSA:

The CSFP MSA defines a transceiver mechanical form-factor with latching mechanism and a host board, SFP-like, electrical edge connector and cage. The CSFF MSA also defines a transceiver mechanical form-factor. The Dual-Channel CSFP has the same mechanical dimensions as the industry standard SFP transceiver and is compatible with the standard SFP cage. The Single-Channel CSFP and CSFF are half the size of the industry standard SFP and SFF packages. The CSFF design is modular to enable configurations of integrated 1, 2 or 4 channel modules. These highly integrated compact transceiver modules will enable network system vendors to increase po

continue reading →
1 visits | 0 Comments|Reply

Single-wave 100G QSFP28 DR1/FR1 Optical Transceivers Have Become Popular Solutions

by Jessie20176 months ago

Data center industry is facing unprecedented development opportunity; the development of various applications of network gave rise to the vast amounts of data requirements. The artificial intelligence has brought high density calculation. All of the information technology has led to the data center to develop to a higher density, higher bandwidth.

The number of QSFP28 optical transceivers used for optical interconnection in data centers only in 2017 has reached nearly 3 million, and the annual compound growth rate of over 100 percent has continued to increase to 2021. 100G QSFP28 optical transceiver series products for data centers have entered the technology maturity, and rapidly develop in the second half of 2016, among which the fastest growing is the QSFP28 optical transceivers used in the data center interconnection.

Single-wave 100G QSFP28 DR1/FR1 Optical Transceivers Have Become Popular Solutions

At the current market, the optical transceivers based on 4*25G NRZ technology ar

continue reading →
1 visits | 0 Comments|Reply

Development Direction of Data Center Optical Transceivers

by Jessie20176 months ago

With the commercial use of cloud computing, big data and other new technologies, data center flow and bandwidth have an index incensement. According to the LightCounting forecast, by 2019, the sales volume of data center optical transceivers will be over $50 million and the market scale is hopeful to reach $4.9 billion, which will be a huge opportunity for optical transceiver vendors. At the same time, we can see that there are some difference in applications of optical transceivers between data center and Telecom. In the post, we will discuss the technology development direction of data center optical transceivers in detail.

On the macro level, the data center optical transceiver market is a market that reasonably defines the life and working conditions of optical transceivers according to the actual requirements, and fully optimizes the market for the cost performance of optical modules. Due to the open trend of several networks, this market has the characteristics of positivity and

continue reading →
2 visits | 0 Comments|Reply

What Optics Products Are Needed in 5G Fronthaul?

In the past few years, Telecom operators have already upgraded their LTE networks by using additional spectrum, carrier aggregation and LTE-A, and have added Small Cell in Macrocell coverage area to drive the increasement of fronthaul bandwidth requirements. In the current, many operators and equipment vendors have standardized the multi-rate transceivers that support 10Gb/s for all fronthaul requirements. Because they are able to meet most of different transmission speed requirement by one device and decrease the complexity of the specific site design and spare part inventory. Many operators, especially those that lease their fronthaul fiber, also deployed WDM system in their fronthaul networks.

5G Fronthaul Will Need Faster Optical Products, But How Fast?

With the emergence of 5G mobile network, the fronthaul demand will also change. The target peak bandwidth of 5G is 20Gb/s, which will require a higher spectrum than LTE to realize the requirement. That is to say, the shorter wavel

continue reading →
2 visits | 0 Comments|Reply
[]